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Synopsis 

A semiempirical model for estimation of viscosities of concentrated polymer solutions’ 
can be applied to mixtures of polymers in a common solvent. The data required for 
estimation of mixture viscosity are: solvent viscosity, polymer molecular weight, 
density, concentration, and intrinsic viscosity in the particular solvent. Calculated and 
experimental viscosities agree to within a few per cent for the relatively nonpolar systems 
for which comparative data are available. The model does not appear to be adequate 
for mixtures in which there are extensive hydrogen-bonding interactions. 

Results of the new model are equivalent to those of an empirical equation2 reported to 
be effective for fairly concentrated binary polymer mixtures. 

Specific interactions between polymeric solutes can be conveniently assessed by com- 
paring measured mixture viscosity to that calculated from the model presented. It is not 
clear, however, that such assessments have any fundamental significance, since the 
interactions which are calculated depend on the assumptions inherent in the estimation of 
the “ideal’’ mixture viscosity. The same reservations apply to other models which have 
been proposed for this purpose. 

INTRODUCTION 

A model has been presented recently for prediction of viscosities of con- 
centrated polymer solutions.’ The model has also been applied to account 
for concentration eff ects3 and universal calibration* in gel-chromatographic 
analysis of polymer molecular weight distributions. This report extends 
the calculations to mixtures of polymers in a common solvent. 

The literature data suitable for comparison of predicted and experi- 
mental mixture viscosities have been developed in the course of studies 
aimed primarily at investigation of specific interactions between polymeric 
solutes. Such interactions are assumed to be related to the difference be- 
tween the measured mixture viscosity and that of an “ideal” system in 
which only hydrodynamic forces are significant (see refs. 2 and 5 for leading 
references). The current approaches in this connection are reviewed below, 
since it is useful to compare predictions of our model with those of other 
ideal estimates as well as with experimental viscosities. 

Our concern in this article is, however, primarily with prediction of 
absolute viscosities of polymer mixtures, rather than estimation of specific 
interactions, despite the nature of the data available for comparison. The 
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model presented permits calculation of such viscosities of relatively non- 
polar polymer-solvent systems to an accuracy sufEcient at least for tech- 
nologic applications (as in surface-coating solutions). The model differs 
from others proposed for specific interaction studies in that experimental 
values of viscosities of concentrated single polymer solutions are not re- 
quired. The present theory resembles the others, however, in that it as- 
sumes purely hydrodynamic interactions and is derived with some semi- 
empirical steps. 

IDEAL MIXTURE VISCOSITIES 
Krigbaum and Walls derived an expression for ideal mixture viscosity by 

analogy from the virial expression for specific viscosity qrp in terms of weight 
concentration C of a single solute mixture: 

Tsp = [VlC + bC2 (1) 

where qsp = (q - qo)/qo, with q and 70 representing the solution and solvent 
viscosities, respectively; and [q ] is the intrinsic viscosity (limiting viscosity 
number). The specific viscosity qsp.n of a mixed-polymer solution, was then 
written as 

$SP.nr  = t,llCI + hzlCz + b,lC12 + 2blZClCZ + bzzCz2 (2) 

where [ql t  is the intrinsic viscosity of a solution of component i alone in the 
common solvent, and the bt, coefficients reflect the interactions between the 
subscripted polymeric species. An ideal mixture is defined as one in which 
blz = (bnbzz)”’. Deviations from ideality are assessed by comparing the 
experimental qsp,m to  that calculated from eq. (2) and the ideal biz, with bl1 
and bZ2 obtained from plots of qsp against C for each polymer alone in solu- 
tion. 

This is essentially a semiempirical definition of ideality. It is consistent 
with a power law expression for mixture viscosities proposed some time 
earliei6 and reduces correctly at infinite dilution to  a mixture intrinsic 
viscosity equal to the weight average of the intrinsic viscosities of the com- 
ponents.’~~ Equation (2) permits calculation of mixture viscosities given 
the intrinsic viscosities and btt co&cients of the components. It is evi- 
dently useful only for very dilute mixtures (for which it was intended), to 
which eq. (1) can be expected to apply. 

Catsiff and Hewett2 have pointed out that the nonadditivity of mixed- 
polymer solution viscosities is evident particularly at  total concentrations 
greater than about 1 wt-%. The apparent success of some of the earlier 
correlations which coincided with the formulation of Krigbaum and Wall 
was thought to be related to the high dilution or close similarity of the 
chemical natures of the solutes. Catsiff and Hewett presented an empirical 
additivity rule which was valid up to a total concentration of nearly 4% 
(w/v) for the systems studied. The definition of ideality from this work 
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could eliminate some specific interactions indicated by application of eq. 
(2). The additivity equation of Catsiff and Hewett can be represented as 

7sp.m = ClTrl(CJ + Czqrz(CJ (3) 
where 7r<(C,) is the reduced viscosity (77 = vlsp/C, = (7 - rlo)/(Ct70) that 
component i would have in a single-polymer solution of concentration 
C ,  = C1+ Cz. Equation (3) is equivalent to  eq. (2) if blz = (l/Z) (bll + bzz). 
That is to say, in this case an ideal mixture is defined as one in which the 
arithmetic rather than the geometric mean of the individual slope constants, 
bit, applies. The bi, values are taken from experimental data for single 
polymer solutions, as in the method of Krigbaum and Wall. A mineral oil 
mixture of a methacrylate copolymer and polyisobutene was found to 
exhibit ideal behavior, as defmed by eq. (3), at total concentrations up to 
4 wt-% and at two temperatures. 

More recently, Williamson and Wrightg studied the behavior of a number 
of mixtures of commercial polymers in a variety of solvents at high dilutions 
and concluded that the equation of Catsif€ and Hewett provides a useful 
reference base for studying viscosities of such solutions. 

An alternative representation follows from the relation between the slope 
constant K’ in the expression for intrinsic viscosity10 

From eqs. (1) and (4), 
K’ = bii/[71i2 (5) 

Cragg and Bigelowll have focused on t.he Huggins’ constant of mixed 
polymer systems rather than the mixture viscosity. By assuming that the 
interaction coefficient is the geometric mean of the individual polymer- 
solvent interaction coefficients 

Kij = (KiKj)”’, (6) 
the following expression for the slope constant K,’ of a mixed polymer sys- 
tem is obtained: 

where the subscripted quantities refer to the contributions of each com- 
ponent at  its given concentration, and W ,  is the weight fraction of com- 
ponent i in the solute. Deviations from ideality were assessed by compar- 
ing measured to “ideal” K‘ values. 

VISCOSITY MODEL 
The equations required for calculation of viscosity of a single polymer in a 

given solvent have been derived elsewhere.’ They are outlined briefly 
below for convenience in following the present article. 
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The volume v of an unswollen polymer molecule (assumed spherical) is 
estimated from 

M cm3 
pN0 molecule 

v = -  

where p is the amorphous density of the polymer at the mixture tempera- 
ture, No is Avogadro’s number, and M is the polymer molecular weight. In 
practical situations, M is evidently an average molecular weight. M, is 
the preferred average for these calculations, for reasons apparent from eq. 
(10). At infinite dilution the polymer molecule is swollen by solvent to an 
effective hydrodynamic volume m0, where eo is a unitless volume factor 
given by 

In eq. (9), K and a are the constants in the Mark-Houwink-Sakurada ex- 
pression linking the limiting viscosity number [q ] and viscosity-average 
molecular weight in the given solvent: 

[ q ]  = K Z P .  (10) 
At finite concentration C (g/cm3), the effective volume factor is decreased 

from €0 to E, where 

and the critical volume factor 
M and of the formula weight of the repeating unit, Mo, as follows: 

is a function of polymer molecular weight 

At any concentration C, the volume fraction 4, of solvated polymer is 

The viscosity of the mixture, q, is given in terms of the solvent viscosity qo 

bY 

?!I? = 1 - 2654 + ll1#3~ - 11.54’. (14) 
t 

The quantitative estimates of the decrease in effective hydrodynamic 
volume with increased polymer concentration are based, with some modifi- 
cations, on the work of Maron and co-~orkers.’~*’~ The equation linking 
solution viscosity and volume fraction of solvated polymer was suggested 
by Ford14 for suspensions of rigid spheres. The viscosity of very dilute 
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systems (solute assumed spherical) is given by the familiar Einstein ex- 
pression 

7 = 90 (1 + 2.54). (15) 

Equations (14 and (15) are mutually consistent only in the limit of infinite 
dilution when 4 is essentially equal to zero. Equation (14) has been shown' 
to give good estimates of viscosities of concentrated solutions up to a critical 
Concentration C,, which is higher than any used in the binary polymer mix- 
tures discussed below. The nature of C, and extensions of the model to 
higher concentrations need not concern us here. 

To extend the viscosity calculations to a mixture of two polymers in a 
common solvent, we simply consider that one polymer is being dissolved in 
the solution of the other. Equation (14) provides a value of vl, the viscosity 
of a solution containing only polymer 1 in pure solvent at a concentration 
equal to the concentration of this polymer in the final mixture, 

where $1 is the volume fraction of polymer 1, from eq. (13) and its predeces- 
sors. 

The calculations for polymer 2 are exactly the same, except that the mix- 
ture viscosity 91.2 is given by ' 

(14b) 
91 - = 1 - 2.542 + 1165 - 11.56'). 

91.2 

Thus, in general, 

where the $i values are calculated as above for species i at its particular 
concentration in the mixture. The mixture specific viscosity is 

Tit - 9 0  
Bsp,m = -- 

9 0  

The parameters for use in eq. (3), of Catsiff and Hewett, can also be cal- 
culated directly from the model, using eq. (14) and the preceding equations, 
with C1 set equal to the weight concentration of each polymer. Such 
estimates are reported in the next section, where it is shown that eq. (16) 
gives results equivalent to those of eq. (3). 

RESULTS 
Calculated viscosities are compared with literature values for binary 

polymer systems in this section. Most of the data available are in terms of 
relative, 7/90, or specific,viscosities, (v/v0) - 1. Since the systems quoted 
are generally dilute, q and v0 are fairly close in magnitude, and prediction 
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TABLE I 
Viscosities of Single-Polymer Mixtures in Benzenes 

Rubber 
[q] = 5.48 dl/g 

Polystyrene 
[q]  = 1.31 dl/g 

Ethyl cellulose A 
[v]  = 1.46dl/g 

Ethyl cellulose B 
171 = 1.36 dl/g 

Polyethylene glycol 
[v]  = 0.077 dl/g 

0.1039 1.1598 1.0025 0.9177 0.6576 8.8325 6.3293 
0.0905 1.0642 0.9448 0.7595 0.5621 8.3927 6.2111 
0.0825 1.0145 0.9110 0.6774 0.5063 8.2160 6.1411 
0.0633 0.8997 0.8336 0.4876 0.3784 7.7024 5.9777 
0.0242 0.6984 0.6877 0.1548 0.1370 6.3960 5.6609 
0.0696 0.6646 0.6614 0.09888 0.09355 1.4217 1.3450 
0.0556 0.6507 0.6498 0.07596 0.07447 1.3652 1.3338 
0.0485 0.6439 0.6439 0.06463 0.06469 1.3337 1.3349 
0.0348 0.6306 0.6327 0.04259 0.04619 1.2248 1.3285 
0.0278 0.6241 0.6271 0.03183 0.03687 1.1442 1.3252 
0.1039 0.7177 0.6997 0.18669 0.15688 1.7971 1.5102 
0.0908 0.7007 0.6873 0.15863 0.13648 1.7471 1.5031 
0.0805 0.6879 0.6777 0.1374 0.12055 1.7069 1.4975 
0.0601 0.6637 0.6588 0.0973 0.08934 1.6204 1.4865 
0.2473 0.9384 0.8265 0.5516 0.3665 2.2305 1.4824 
0.1731 0.8120 0.7560 0.3426 0.2500 1.9791 1.4442 
0.1484 0.7768 0.7333 0.2844 0.2125 1.9168 1.4317 
0.1237 0.7417 0.7110 0.2263 0.1755 1.8300 1.4195 
0.0989 0.7090 0.6890 0.1723 0.1392 1.7422 1.4074 
0.0742 0.6771 0.6674 0.1195 0.1035 1.6113 1.3955 
2.2296 0.7473 0.7246 0.2357 0.1981 0.1057 0.0889 
1.9509 0.7241 0.7076 0.1972 0.1700 0.1011 0.0871 
1.6722 0.7048 0.6912 0.1652 0.1429 0.0989 0.0854 
1.3935 0.6834 0.6754 0.1299 0.1168 0.0933 0.0838 
1.1148 0.6655 0.6603 0.1004 0.0917 0.0900 0.0823 
0.5100 0.6269 0.6292 0.0365 0.0403 0.0716 0.0791 
0.4371 0.6225 0.6256 0.0292 0.0344 0.0669 0.0787 

Mark-Houwink constants 
benzene solutions Amorphous 

density 
K ,  cms/g a Temp., "C Ref. p,c g/cms 

~ ~~ 

Rubber 0.0185 0.74 30 (15) 0.913 
Polystyrene 0.00918 0.743 25 (17) 1.047 
Ethyl cellulose 0.0292 0.81 25 (18) 1.15 
Polyethylene glycol 0.129 0.50 25 (19) 1.13 

a Data, from Krigbaum and Wall.6 
b Equation (14). 
0 From Lewis.'S 

errors are equal to larger fractions of qt or qsp than of q itself. This is il- 
lustrated in Table I for single-polymer mixtures. The predicted solution 
viscosity q is shown to agree with the experimental value to within a few 
per cent, whereas the errors in qlsp are somewhat larger. The agreement 
between qexp and qcSlc is reasonably good, considering the semiempirical and 
a priori nature of the model. Most of the subsequent results are quoted for 
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solution viscosities, since the model is primarily intended for this applica- 
tion. 

Krigbaum and Wall6 report experimental viscosities for five different 
polymers in benzene solution. The kinematic viscosities reported were 
converted to dynamic viscosities by multiplying by 0.8685 g/cm3, the 
density of benzene at  25°C. Solvent viscosity qo was taken as 0.6028 
centipoises at  25°C. Table I compares experimental viscosities of single 
polymer solutions at  various concentrations with those calculated from eq. 
(14), using the Mark-Houwink constants listed in this table. Solution 
viscosity (7) values are seen to agree fairly well. The relative agreement 
deteriorates, however, as one proceeds to qsp and qsp/C calculations, as 
mentioned above. 

All the systems listed in Table I are rather dilute, except for the poly- 
ethylene glycol mixture. Viscosities are reported to four decimal places, as 
in the original article? Not all the input data required for the calculations 
in Table I are as accurate as might be desired. For example, the Mark- 
Houwink constants for the rubber-benzene system are taken from experi- 
ments at  30"C, rather than the 25°C experimental temperature in this case. 
The density used for ethyl cellulose is not that for amorphous polymer, and 
the calculations assume that each solute molecule is an isolated spherical 
entity, although ethyl cellulose is known to associate in benzene s~lution.~ 

Table I1 lists viscosities of benzene mixtures of the rubber polymer with 
polystyrene and with ethyl cellulose. Data on ethyl cellulose-polyethylene 

TABLE I1 
Viscosities of Mixtures of Polymers in Benzene 

$ C S l O C  W o , d  kalcle 

Weight qexp, poises poises poises poises 
Mixture fractionh x 10-2 x 10-2 x 10-2 x 10-2 

Rubber-polystyrene * 0.5001 
gt = 0.06954 g/dl 0.6001 

0.7001 
0.8001 
0.9000 

Rubber-ethyl cellulose A * 0.4870 
gt = 0.0607 g/dl 0.5874 

0.6889 
0.7919 
0.8952 

Rubber-ethyl cellulose A * 0.5880 
gt = 0.0807 g/dl 0.6894 

0.7919 
0.8954 

0.7718 
0.7499 
0.7272 
0.7057 
0.6841 
0.7552 
0.7363 
0.7154 
0.6970 
0.6790 
0.7985 
0.7691 
0.7406 
0.7144 

0.7599 
0.7402 
0.7205 
0.7008 
0.6811 
0.7435 
0.7271 
0.7104 
0.6935 
0.6766 
0.7709 
0.7481 
0.7249 
0.7015 

0.7590 0.7753 
0.7394 0.7510 
0.7198 0.7277 
0.7002 0.7053 
0.6808 0.6839 
0.7434 0.7590 
0.7270 0.7391 
0.7102 0.7196 
0.6934 0.7004 
0.6766 0.6817 
0.7706 0.7920 
0.7477 0.7641 
0.7246 0.7369 
0.7013 0.7106 

a Data from Krigbaum and Wall.6 
h Weight fraction given for component marked by asterisk. 
c Equation (3). 
d Equation (16). 

Equation (2). 
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glycol mixtures were not measured at  fixed total polymer concentrations and 
could not be estimated in this work. 

In  general, the closest fit to experimental points is given by eq. (2), of 
Krigbaum and Wall. Applications of this equation require data on the 
viscosities of singlepolymer solutions. The present calculations using the 
Catsiff and Hewett relation, eq (3), are made from singlc+polymer solution 
viscosities estimated from our eq. (14). These results are essentially 
equivalent to those obtained from our model directly through eq. (16). The 
only parameters required in either of the latter two methods are polymer 
intrinsic viscosity and molecular weight, for use in eqs. (9) and (12). The 
calculated values agree with experimental binary solution viscosities to 
within a few per cent. The experimental values are slightly underestimated 
by our model. 

Data for other polymer systems were reported by Williamson and 
Wright,s again in very dilute mixtures. Experimental and calculated 
(from eq. (14)) values for single polymer solutions are given in Table 111. 
The estimates for the two nonpolar polymers in butanone are fairly close to 

TABLE I11 
Viscosities of Single-Polymer Mixtures. 

Styrene-acrylonitrile Poly(methy1 meth- 
copolymer in acrylate) in Poly(viny1 alcohol) 

butanone (25°C) butanone (25°C) in water (25OC) 

Concentra- poises poises poises poises poises poises 
Zexm 90.10, %XPl %do, 'ISXP, % d O ,  

tion, g/cm3 x 10' x 10s x 102 x 10' x 102 x 10* 

0.01 
0.008 
0.007 
0.006 
0.005 
0.004 
0.003 
0.002 
0.001 

0.70 0.68 
0.64 0.62 
0.59 0.58 
0.56 0.55 
0.53 0.52 
0.50 0.49 
0.47 0.47 
0.44 0.44 
0.41 0.41 

0.52 0.53 
0.49 0.50 
0.48 0.49 
0.47 0.47 
0.45 0.46 ' 
0.44 0.44 
0.43 0.43 
0.42 0.42 
0.40 0.40 

2.06 1.59 
1.73 1.43 
1.59 1.35 
1.45 1.28 
1.33 1.21 
1.21 1.14 
1.12 ' 1.08 
1.03 1.01 
0.96 0.95 

Solvent 
Polymer viscosity, 

Mark-Houwink constants 

K ,  Temp., density poises Polymer 
Polymer-Solvent cm8/g a "C Ref. p, g/cms X 101 M ,  MOO 

SANC-butanoned 0.036 0.62 30 (20) 1.165 0.39 164,000 78.6e 
PMMA-butanone 0.0068 0.72 25 (21) 1.179 0.39 126,000 100.1 
PVA-water 0.020 0.76 20 (22) 1.269 0.894 40,900 44.05 

Data from Williamson and Wright.0 
b From Lewis.l6 
0 Equation (12). 
d Value quoted is for 38.3/61.7 mole ratio of*pcrylonitrile to styrene. 
* Estimated for equimolar ratio of monomers. 
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the experimental values. The viscosities calculated for poly(viny1 alcohol) 
in water are underestimated at  the higher concentrations in the experi- 
mental range. Uncertainties in the Mark-Houwink constants are un- 
likely to be a factor here, since the €0 value is taken- directly from the experi- 
mental [v] for use in eq. (9), and errors in a, have relatively little effect 
on ez calculated from eq. (12). It would appear that the model used here is 
inadequate for solutions, such as poly(viny1 alcohol) in water, in which there 
can be appreciable hydrogen bonding between solvent and solute. Another 
failure at  matching viscosities in this system has been noted previously.' 

Table IV lists experimental and predicted viscosities for equal concentra- 
tion mixtures of the styrene-acrylonitrile copolymer and poly(methy1 
methacrylate) in butanone. For this dilute system of relatively nonpolar 
solutes, both eq. (16) and eq. (3), using single-polymer viscosities calculated 
from eq. (14), again produce equivalent calculations which coincide with 
experimental viscosities to within a few per cent. 

TABLE IV 
M i u r e s  of SANCjPMMA in Butanonen 

Experimental Calculatedb Calculated0 

Concen- B ~ ~ / C ,  BY VSP/C, 8, tJ*PP/C, Bt 
tration, (cm*/g) poises (cm*/g) poises (cma/g) poises 

g/cc X lo-' vr X 10% X 10-2 vr x 102 X 10-2 7, x 102 

0.01 
0.008 
0.007 
0.006 
0.005 
0.004 
0.003 
0.002 
0.001 

0.520 
0.520 
0.517 
0.517 
0.517 
0.517 
0.517 
0.517 
0.517 

0.520 
1.416 
1.362 
1.310 
1.259 
1.207 
1.155 
1.103 
1.052 

0.59 
0.55 
0.53 
0.51 
0.49 
0.47 
0.45 
0.43 
0.41 

0.567 
0.545 
0.535 
0.524 
0.514 
0.505 
0.495 
0.486 
0.477 

1.567 
1.436 
1.374 
1.315 
1.257 
0.202 
1.149 
1.097 
1.048 

0.61 
0.56 
0.54 
0.51 
0.49 
0.47 
0.45 
0.43 
0.41 

0.557 
0.537 
0.528 
0.518 
0.509 
0.500 
0.492 
0.484 
0.476 

1.557 
1.430 
1.369 
1.311 
1.255 
1.200 
1.148 
1.097 
1.048 

0.61 
0.56 
0.53 
0.51 
0.49 
0.47 
0.45 
0.43 
0.41 

Data from Williamson and Wright.0 
b Equation (16). 

Equation (3). 

The SANC-PMMA-butanone system is listed by Williamson and 
Wrightg as being nearly ideal, in that specific interactions between polymers 
are not experimentally significant. Other binary polymer mixtures re- 
ported in this reference were not estimated here, either because of lack of 
Mark-Houwink constants or because the experimental data appear to be 
uncertain. 

The data of Cragg and Bigelow" refer to dilute mixtures of polystyrene 
and poly(methy1 methacrylate) polymers in m-xylene at 25°C. For esti- 
mation purposes, co, eq. (9), was calculated from the experimental limiting 
viscosity numbers. Polymer molecular weights were taken as reportedl' 
and used in eq. (12) to derive eZ. Viscosities of mixed polymer solutions 
were estimated, at  the cited mixture compositions, in the experimental con- 
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centration range (0.05-1.0 dl/g). A linear least-squares fit to the (l/C) 
($/TO - 1) versus C plot then provided calculated values of the limiting 
viscosity number and Huggins' constant K' for the mixed system. 

Figure 1 compares the estimated and experimental limiting viscosity 
numbers for the two mixtures reported by Cragg and Bigelow." The 
calculated line coincides with experimental values. The present model 
reduces in this case (infinite dilution) to the ideal expression which equates 

0 .25 .50 -75 1.00 
WEIGHT FRACTION POLYSTYRENE 

Fig. 1. Variation of [q] with weight fraction polystyrene (PS) in m-xylene mixtures with 
poly(methy1 methacrylate) (PMMA). Data from ref. (11). 

A PREDICTED POINTS FOR CONC 1.0-0.05 gldl  
0 P ~ M S  FROM CRAGG ~ E I G E L O W  

P S  3 3  I 6x106 
PMMA 0 2 4  0 6x106 

'IDEAL' RELATION 

0.0 0.25 0.50 0.75 
WEIGHT FRACTION POLYSTYRENE 

Fig. 2. Variation of K' with weight fraction PS. Data from ref. (11). 
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0 

.30 I I 
.25 50 .75 1.00 

WEIGHT FRACTION POLYSTYRENE 

Fig. 3. Variation of K’ with weight fraction PS. Data from ref. (11). 

intrinsic viscosity of the mixture to the weight average of the intrinsic 
viscosities of the components. 

Figure 2 shows calculated and experimental K‘ values for the mixture 
containing high molecular weight polystyrene. The experimental points 
are rather scattered, and the point for pure poly(methy1 methacrylate) 
seems to be too high to be reliable. The predicted values lie close to, but 
slightly higher than, the experimental points. The agreement here is about 
as good as that produced by the ideality assumption, eq. (7), of Cragg and 
Bigelow,ll which uses experimental [v] and K’ values from single-polymer 
solutions. Figure 3 shows a similar plot for the mixture containing high 
molecular weight poly(methy1 methacrylate). The agreement here is not 
good, but our predicted values do differ from those of the Cragg and Bigelow 
model, which produced estimates that were always higher than the experi- 
mental points. Our “ideal” curve shows negative deviations in PMMA- 
rich mixtures and positive deviations in PS-rich mixtures. 

We note in this connection that the calculated values of Huggins’ con- 
stant depend to a small but significant extent on the concentration range 
used for such estimations. The use of the present model to predict Hug- 
gins’ constants will be reported separately. 

DISCUSSION 

The data available are confined to dilute systems, and the comparison of 
predicted and experimental values is therefore limited. The predictions of 
viscosities of single-polymer solutions in Tables I and I11 are quite close to 
experimental values, considering that the main parameters required for the 
calculations are polymer molecular weight and intrinsic viscosity in thc 
particular solvent. 
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The model is not adequate for poly(viny1 alcohol) mixtures and tends to 
be defective at  higher concentrations of ethyl cellulose. This may indicate 
a general deficiency for systems in which hydrogen-bonding effects are 
significant. The model might need to be revised for such mixtures. It 
does appear to be useful, however, at  least for relatively nonpolar synthetic 
polymers and their common solvents, as judged by the data presented here 
and in a previous report.’ 

For such systems, the viscosities of binary solute mixtures can be esti- 
mated with a reliability which should be adequate for most practical pur- 
poses (Tables I1 and IV). The model reduces to the correct values at in- 
finite dilution (Fig. 1). Our eq. (16) gives essentially equivalent results to 
the empirical relation, eq. (3), of Catsiff and Hewett.2 Thus, the latter 
equation is given some fundamental meaning if the present model ifi ac- 
cepted for single polymer solutions. The equation of Catsiff and Hewett is 
stated to hold up to a total weight concentration of 4% for the systems 
studied. The new model should then be expected to apply at least up to 
this concentration. 

The scheme presented here can, of course, be applied to estimate ideal 
miFture viscosities for assessment of specific interactions. It is particu- 
larly convenient for this purpose because the ideal viscosity is predictive 
and does not require measurements on single-polymer mixtures at various 
concentrations. It suffers in this respect, however, along with all the other 
approaches cited, in selecting ideal behavior in an essentially arbitrary 
manner. Any interactions assessed by comparing experimental with esti- 
mated solution viscosity are subject to the empirical assumptions involved 
in deciding ideal behavior. Since our calculations coincide with those of 
the Catsiff and Hewett method,Q our model implicitly equates ideal be- 
havior with an arithmetic mean of the bf, interaction coefficients mentioned 

The only model for “ideal” solution behavior which is demonstrably 
based on fundamental grounds is that in which the intrinsic viscosities of 
binary and singlesolute systems are compared. By this criterion the poly- 
styrene-poly(methy1 methacrylate) mixtures discussed above exhibit no 
specific interactions. This seems reasonable on physical grounds, since it 
is not clear why one of the two mixtures should deviate from ideality (as 
judged by K’ values) much more than the other. Data are not available 
for calculation of intrinsic viscosities of the other mixtures cited. 

The basic model used to estimate viscosity of single-polymer mixtures 
rests on empirical relations, such as those between ez and M ,  eq. (12), and 
between 1) and 4, eq. (14). It could be useful to investigate the fundamental 
basis for such correlations and so perhaps improve the predictive character 
of the theory. We have delayed such investigations until the general value 
of the model is more clearly established. Since it is semiempirical, it must 
fail sooner or later. The present report and others cited3v4 have explored 
extensions and applications of the model in this connection. The calcula- 
tions of viscosities of mixed-polymer solutions seem to  be reasonably suc- 

’ above. 
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cessful, at least within the limits noted. For many purposes, an error in 
solution viscosity of the magnitude of those found here may be compensated 
by the convenience of prediction without recourse to experiment for every 
new system. 

The authors thank the E. I. du Pont de Nemours and Co. Roy 13. Davis Memorial 
Fellowship of the Paint Research Institute for financial support. 
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